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Evaluating OpenFace: an open-source automatic facial comparison
algorithm for forensics
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ABSTRACT
This article studies the application of models of OpenFace (an open-source deep learning
algorithm) to forensics by using multiple datasets. The discussion focuses on the ability of
the software to identify similarities and differences between faces based on images from
forensics. Experiments using OpenFace on the Labeled Faces in the Wild (LFW)-raw dataset,
the LFW-deep funnelled dataset, the Surveillance Cameras Face Database (SCface) and
ForenFace datasets showed that as the resolution of the input images worsened, the effect-
iveness of the models degraded. In general, the effect of the quality of the query images on
the efficiency of OpenFace was apparent. Therefore, OpenFace in its current form is inad-
equate for application to forensics, but can be improved to offer promising uses in the field.
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Introduction

Over the past decade, algorithms for automatic
facial analysis have garnered the interest of the
biometrics community. However, none of the ones
proposed thus far has been able to generate results
that compare in accuracy to manual identification
of faces by a human. OpenFace is an open-source
toolkit based on the FaceNet algorithm for auto-
matic facial identification that was created by
Google [1]. It has been developed and shared as
an open-source software by Brandon Amos in
Satya’s research group at Carnegie Mellon
University [2]. The main advantages of OpenFace
are that it does not require many human resources,
it has yielded impressive performance on the
Labeled Faces in the Wild (LFW) benchmark, and
it is open source.

OpenFace has multiple potential applications to
forensics, such as facial recognition of suspects of
crimes and people reported missing. Moreover, it
can be used to identify dead bodies.

The purpose of this study is to examine whether
OpenFace is sufficiently efficient enough for use in
forensics by assessing its performance.

Materials and methods

There are three main tasks related to digital
facial identification: (1) verification, (2) recognition
and (3) clustering of faces. FaceNet and OpenFace

can perform these tasks based on stable images
and real-time Web videos [3,4]. FaceNet is based
on Euclidean embedding per image, which uses
the deep neural net (DNN) for the representation/
embedding of a query face on a 128-dimensional
(128D) unit hypersphere [1]. Furthermore, squared
L2 distances are used to determine similarities
among pairs of faces posed as queries. Moreover,
recognition is performed by using k-nearest neigh-
bours (k-NN) classification algorithm, whereas the
clustering of the similar faces is effected using the
well-known k-means clustering or agglomerative
clustering. Moreover, a triplet-based loss function
used during training, based on the large-margin
nearest-neighbour (LMNN) classification [5],
ensures that the output of FaceNet is correctly
used. The output is composed of matching and
non-matching faces [5,6]. In general, it minimizes
the relevant distance when the same face appears
in both query images and maximizes it when dif-
ferent the faces appearing in the pair of query
images are different. This is based on Equation
(1), where vai ; v

p
i � vni are the anchors, positive

images and negative images, respectively; T repre-
sents all possible sets of triplets in the training set
with N entities; and a is the margin between the
positive and negative pairs of faces:

kxai � xpi k22 þ akxai � xni k22;
8ðxai ; xpi ; xni Þ 2 T:

(1)
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The minimized loss is described in Equation (2):

XN
i

kf xai
� �� f xpi

� �
k22 � kf xai

� �� f xni
� �k22 þ a

h i
þ
:

(2)

argmaxxpi kf xai
� �� f xpi

� �
k22: (3)

argminxni kf xai
� �� f xni

� �k22: (4)

kf xai
� �� f xpi

� �k22 < kf xai
� �� f xni

� �k22: (5)

A critical step in this triplet loss function is
the selection of triplets that can help improve
method. To do so, we select hard positives and
negatives according to Equations (3) and (4),
respectively. The convolutional neural network
(CNN) training of the models, as described in [1],
is carried out based on two methods, stochastic
gradient descent (SGD) with standard backpropa-
gation [7,8] and AdaGrad [9]. In general, there
are two types of models, the differences between
which lie in their floating-point operations per
second (FLOPS) and the parameters used [10,11].

An example of the whole OpenFace procedure is
given in Figure 1 using an image of the actor
Sylvester Stallone from the LFW datasets.

The authors in [1] claimed that a threshold of 1,1
is sufficient for the correct classification of query
faces, whereas 0,0 corresponds to identical faces and
4,0 to completely opposite faces [1].

The necessary changes to the OpenFace code
were made so that it could be used with the chosen
databases, instead of to using a comparison of the
images one by one. The main change in the code in

this aspect was the omission of the itertools called
combinations_with_replacement (iteration, r) in the
initial code [12]. This function returns combinations
of the inputs of a specific length (input), where the
replacement of elements is allowed. For instance, if
the input “ABC” for the iteration r is two, the fol-
lowing combinations are returned: AA, AB, AC, BB,
BC and CC.

This means that the number of the returned ele-
ments is

nþ r � 1ð Þ!=r!= n� 1ð Þ! (6)

where n is the input dataset, where n> 0, and r is
the length of the combinations. For the purpose of
this research, the best means of comparison is to
modify the implementation of the relevant file such
that the first image is compared against the rest.
Moreover, additional modifications to the initial
code involve saving image names, the values of the
relevant distances in an array, and sorting them in
ascending order for easier examination of the most
relevant faces in the images. It should be mentioned
that when the model cannot find a face in an image,
the relevant distance is initialized to 4.0, which is
the maximum possible distance. Finally, the modi-
fied program can accept more than one input image
to compare against the rest of the dataset. Once the
classification stops when the detector cannot find a
face on an image, we manually remove all these
images and run the algorithm again on the remain-
der of the image dataset.

Figure 1. An example of the OpenFace procedure ADDIN.
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Experiments

We verified the performance of the method above on
an NVIDIA Corporation GM204 [GeForce GTX 980]
graphics processing unit (GPU) with Ubuntu 14.04.
Moreover, various open-source materials are needed
to properly use OpenFace, namely OpenCV [13],
Torch [14], Git [15], Docker [16] and Dlib [17].

Datasets

The input data were one of the most important
aspects of this study because the images used in
forensic applications, such as from surveillance cam-
eras, are low resolution, or are left with poor reso-
lution following the detection and localization of the
faces in them.

For this study, multiple datasets were used:

� LFW benchmark [18], with two types of data:
raw and deep-funnelled images;

� Surveillance Cameras Face Database (SCface) [19],
with case scenarios from typical forensic cases
with frontal and profile images from surveillance
cameras; and

� ForenFace [20], with case scenarios from typical
forensics’ cases with frontal, side, and profile
facial images captured using surveillance cam-
eras, and underwent multiple modifications, such
as being cropped and turned.

Verification on LFW

The first part of the experiments involved the verifi-
cation of the reported results of OpenFace using the
LFW benchmark [4]. Only four pre-trained open-
source NN4 models were available. Table 1 lists the
parameters and landmark indices for each model [4].
They were trained on two large datasets: FaceScrub
[21], which contained over 100 000 images of 530
people; and CASIA-WebFace [22], which consisted of
500 000 images of 10 000 people.

Our experiments were conducted on the Docker
machine on an eight-core, 3.70GHz central process-
ing unit (CPU) and a Tesla K40 GPU using
OpenBLAS [24]. The performance of the models
was calculated by averaging over 500 forward passes
with util/profile-network.lua, and the results are
shown in Table 2 [4].

When the models used the deep-funnelled LFW
images, they could not detect a face or landmark
using a dlib of 58 for 13 233 images. Our experi-
ments on the NVIDIA GM204 [GeForce GTX 980]
GPU with Ubuntu 14.04 for the available evaluation
(lfw.py) yielded results (Table 3) that show the
accuracy and the area under curve (AUC) of each
model on the LFW dataset in comparison with

FaceNet and the AUC reported in [1]. An important
aspect of this evaluation was that eight processes
were used by the researchers in [1], which was the
number of random processes used for our verifica-
tion of the results reported by Brandon Amos con-
cerning Satya’s research group at Carnegie Mellon
University [2,4].

Results

The model was evaluated based on the equal error
rate (EER), receiver operating characteristic
(ROC) and the AUC [25–27]. To create a new
evaluation code, an important requirement is that
when the model is unable to find a face in the
input image, it should assign the greatest possible
distance to it (4.00) because more images can be
used in this way for the assessment of the models
in each dataset, which renders the evaluation
more accurate. However, images that the model
could not align were not considered, as it is
impossible to store empty arrays. Nonetheless, the
new code for the comparison of the faces in the
images maximized the distance of the images
mentioned above with a value of 4.00, as shown in
Table 4. There were fewer raw images that the
model was unable to align and compare than
deep-funnelled images because the latter had been
turned, and their resolution was lower than that
of the raw images.

Table 5 lists the number of images per dataset in
which the model was unable to find a face during

Table 1. Parameters of OpenFace and landmark indices per
model [4].
Model Number of parameters Alignment

nn4.v1 6 959 088 INNER EYES AND BOTTOM LIP
nn4.v2 6 959 088 OUTER EYES AND NOSE
nn4.small1.v1 5 579 520 OUTER EYES AND NOSE
nn4.small2.v1 3 733 968 OUTER EYES AND NOSE

Table 2. Runtime of OpenFace on both central processing
unit (CPU) and graphics processing unit (GPU) per model [25].

Model

Runtime (�x ± s, ms)

CPU GPU

nn4.v1 75.67 ± 19.97 21.00 ± 6.71
nn4.v2 82.74 ± 19.96 20.82 ± 6.03
nn4.small1.v1 69.58 ± 16.17 15.90 ± 5.18
nn4.small2.v1 58.90 ± 15.36 13.72 ± 4.64

Table 3. The accuracy and area under the curve (AUC) of
each model on OpenFace, and accuracy and AUC of
FaceNet as reported in [1].
Model Accuracy (�x ± s) AUC

nn4.v1 0.761 2 ± 0.018 9 0.853
nn4.v2 0.915 7 ± 0.015 2 0.966
nn4.small2.v1 0.929 2 ± 0.013 4 0.973
nn4.small1.v1 0.921 0 ± 0.016 0 0.973
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the comparison of the images. A total of 25.6% of
the images of SCface and 42.5% of those of
ForenFace could not be aligned by the model, and
no face was identified in them [28]. In general, the
face detector could not find faces when the selected
landmarks of the face were absent, such as in side
profiles or low-resolution images.

Figure 2 as created based on the new evaluation
code for the nn4.small2.v1 model. The difference in
ROCs between Figure 2 (A)–(E) and the results in
Table 3 obtained because two evaluation codes were
used. The figures shows the ROCs per dataset while
using 10 random processes for each. According to
Figure 2 (C) and (D), it is clear that there was a
trend of discontinuity in the curves after a certain
point. This can be attributed to the maximization of
the initial distances of all images in which the
detector could not find a face, with a value of 4.0.

Thus, for both the ForenFace and SCface data-
sets, the FPR and TPR should have been almost
identical once the detector had processed all images
that it could. The images that the detector could not
align are not considered. Moreover, the input
images from the ForenFace and SCface datasets
were different in size from those of the LFW data-
sets, which was the size required by the detector.
This means that the images needed to be rescaled
while the detector processed them. This could have
affected the performance of both the detector and

Table 4. Number of images that the model could not align
per dataset.

Dataset
Total number of

images
Number of images

not aligned

LFW-raw 13 233 60
LFW-deep funnelled 13 233 65
SCface 4 166 1 065
ForenFace 2 819 1 197

Table 5. Number of images on which the
nn4.smal2.v1model could not find a face per dataset.

Dataset
Total number of

images
Number of images

no face

LFW-raw 13 233 57
LFW-deep funnelled 13 233 65
SCface 4 166 1 067
ForenFace 2 819 1 197

Figure 2. Receiver operating characteristics (ROCs) of nn4.small2.v1 OpenFace model with the use of Raw (A), Raw LFW dataset
(B), SCface dataset (C) and ForeFace dataset (D)
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the models, and might have contributed to the dis-
continuity of the relevant curves.

Only 10 processes were used for the evaluation of
the model, because, as Table 6 shows, it was time
consuming to obtain the relevant results. Moreover,
a considerable number of processes (two more than
in the evaluation of Amos [4]) were needed to
obtain representative performance from the model.
For these processes, 10 random images of different
subjects were compared from each dataset with all
images of the relevant dataset, including the same
image. Table 7 shows the performance of the mod-
els based on the new evaluation code using the
LFW-raw dataset. This clarifies that there were
slight differences between the results of evaluation
approaches in terms of the AUCs of the OpenFace
models. These differences can be attributed to the
random sampling of the images used for the evalua-
tions. Furthermore, according to the runtimes of the
models, it is clear that model nn4.small2.v1 was the
fastest. This was expected, as the nn4.small1.v1 con-
sidered the second smallest number of parameters
after the nn4.small2.v1 model. However, the expo-
nential rise in the sizes of image databases provides
additional value to the expected runtimes of the
models. Based on the above, an in-depth examin-
ation and report only of the ROCs of the
nn4.small2.v1 model is provided here.

The performance of nn4.small2.v1 model on each
dataset clarified the robustness of the correlation
between the performance of the model and the data-
set used. The resolution of the input images played

an important role in the evaluation of the models.
Table 6 shows the calculated EER, AUC, and the
threshold to be used per dataset to obtain more
accurate verification/recognition results with using
the nn4.small2.v1 OpenFace model. It is evident
that the EER increased as the quality/resolution of
the input images decreased.

The above-mentioned results lead to the conclu-
sion that the performance of the model is dependent
on the quality/resolution of the input images.
Table 8 shows the amount of time that the model
needed per dataset for a one-by-one image compari-
son and one image comparison with the full the
relevant dataset. In general, the runtime depended
on the quality and number of input images.
However, as the quality of the images decreased,
there was a stronger correlation between the run-
time of the model and the quality of the images
than between it and the number of images.

As Tables 4 and 5 show, SCface and ForenFace
had a smaller number of images compared to LFW,
and contained more images that the model had
been unable to align, and in which it had been
unable to find a face. This can be attributed to the
fact that the model needed more time to process
images of low resolution as the number of images
that it could not align, or in which it could not find
a face, increased. Based on the results in Table 6, it
is clear that the threshold reported in [1] was not a
good approximation for any of the tested datasets
because it was higher than the calculated threshold.
Moreover, even for raw and deep-funnelled LFW

Table 7. Calculated equal error rate (EER), area under curve (AUC) and the
threshold of OpenFace models using the LFW-raw dataset. (�x ± s)
Model EER AUC Threshold Runtime (min)

nn4.v1 0.201 26 ± 0.05 0.872 66 ± 0.50 0.893 60 ± 0.03 208.328 ± 4.97
nn4.v2 0.072 18 ± 0.04 0.977 71 ± 0.02 0.803 34 ± 0.03 194.844 ± 2.20
nn4.small2.v1 0.068 66 ± 0.06 0.974 56 ± 0.03 0.750 39 ± 0.05 147.694 ± 3.89
nn4.small1.v1 0.078 78 ± 0.06 0.971 43 ± 0.03 0.735 88 ± 0.05 157.426 ± 2.23

Table 6. Calculated equal error rate (EER), area under curve (AUC) and threshold per dataset of nn4.small2.v1 OpenFace
model. (�x ± s)
Dataset EER AUC Threshold

LFW-raw 0.068 66 ± 0.068 66 0.974 56 ± 0.026 57 0.750 39 ± 0.523 50
LFW-deep funnelled 0.177 81 ± 0.228 06 0.907 36 ± 0.111 17 0.776 68 ± 0.112 39
SCface 0.359 20 ± 0.011 32 0.654 34 ± 0.015 93 0.652 29 ± 0.004 79
ForenFace 0.392 32 ± 0.036 73 0.614 24 ± 0.040 08 0.480 53 ± 0.019 78

Table 8. Runtime of nn4.small2.v1 model per dataset for one-by-one image
comparison, and a comparison with the full relevant dataset.

Dataset Number of images

Runtime (�x ± s)

One by one (s) One by dataset (min)

LFW-raw 13 233 2.912 14 ± 0.133 64 147.694 ± 3.89
LFW-deep funnelled 13 233 2.829 15 ± 0.103 33 140.556 ± 10.01
SCface 4 166 8.160 33 ± 5.965 04 207.976 ± 3.83
ForenFace 2 819 5.984 54 ± 4.085 99 53.506 ± 13.06
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datasets, the calculated threshold was notably lower
than the 1,1 in [1]. Therefore, the threshold should
depend on the dataset used.

As the quality of the input images decreased, the
proper threshold decreased as well. In Tables 7 and
8, the calculated threshold is approximately 0.35
points lower than that reported for FaceNet using
LFW datasets. Moreover, the thresholds for the
SCface dataset were approximately 0.65 and 0.48 for
the ForenFace. Therefore, there was a reduction of
approximately 50% in the initial threshold using
SCface and ForenFace. Based on the results on
SCface and ForenFace, it is evident that there was a
noticeable FPR for both, which means that in foren-
sic use, the result of OpenFace could have been in
favour of the suspect, which is not objective. This
clarifies the crucial role of an appropriate threshold
for adequate results of the comparison of images, as
the verification depends solely on the calculated L2-
norm distance. Nevertheless, for both the SCface
and ForenFace datasets, a considerable number of
images were not aligned.

A comparison of the two evaluations of the mod-
els of OpenFace on the LFW datasets shows that the
runtime of the models relied heavily on the machine
used for the experiments. On an NVIDIA
Corporation GM204 [GeForce GTX 980] GPU with
Ubuntu 14.04, the runtime refers to the scale of sec-
onds, whereas that reported in [4] referred to a scale
of milliseconds (1 s¼ 1 000ms).

The above implies that as the size of the dataset
increased, the relative runtimes for a query image to
the dataset rose proportionally. Moreover, the
reported AUC of the nn4.small2.v1 model was
0.973, whereas the AUC obtained using the new
evaluation code on the same dataset decreased
slightly. Furthermore, the number of images that the
models could not align corresponded to that
reported in [4]. Nevertheless, there was no reference
in [4] to the number of images in which the models
could not find a face using the LFW benchmark.
There is a major difference between the two evalu-
ation approaches: The one reported in [4] consid-
ered both the LFW datasets simultaneously, whereas
the proposed evaluation approach examined each
dataset separately. This could have had a slight
effect on the results, as when the model could not
align the raw LFW image, it considered the relevant
deep-funnelled LFW image. However, this does not
justify the magnitude of the difference between the
approaches in terms of the performance of
the models.

OpenFace was further examined regarding the
performance of its models based on various image
modifications. In particular, the following image
modifications were examined: (1) 90� rotation, (2)

180� rotation, (3) vertical flip, (4) horizontal flip, (5)
cropping, (6) resizing to smaller dimensions and (7)
resizing to larger dimensions. All the examined ini-
tial images were 250� 250 pixels. The experiments
show that when an image was rotated or flipped
vertically, the models were unable to find a face in
them. Moreover, when the alignment of the input
image did not normally result in a tilted image, the
models were not always able to find a face on such
images either. This depended on the degree of tilt
and the resolution of the image. However, the mod-
els performed relatively well when the images were
flipped horizontally, on a scale of 0.3 raised to the
relevant initial distance between the query images.

For modifications to sizes of the images, multiple
dimensions between 100� 100, and 600� 600 pixels
were used. The models perform sufficiently well
after the above two modifications. Specifically, for
resized images, either smaller or bigger, there was
an increase in scale of 0.002–0.01 in the relevant ini-
tial distance. For cropped images, there was an
increase in scale of 0.015 in the relevant ini-
tial distance.

Another useful part of OpenFace is the classi-
fier.py code. This considers each input image separ-
ately and calculates the confidence (between 0.0 and
1.0) with which the dlib [18] can classify the query
face in the image. The experiments show that when
the confidence of the classifier for a query image
was lower than 0.5, the EER was high and the AUC
was small. In general, a significant number of
images in all examined datasets yielded classification
confidence scores of smaller than 0.5. However, the
number of these images increased when the SCface
and ForenFace datasets were used, as the resolution
of the relevant images was lower than those in the
LFW datasets. Therefore, when facial comparison
between a query and a reference image was needed,
the use of the classifier yielded a reasonably good
estimation of the adequacy of the results of the
comparison. This can be the first part of the proced-
ure if OpenFace is used for forensic purposes. Then,
based on this score, whether OpenFace per query
image should be used can be determined, as the
evaluation of models of OpenFace depends signifi-
cantly on the input images.

Discussion

There are multiple advantages of using OpenFace
compared with other facial analysis toolkits. As
described in [29] and [2], a trained model is avail-
able online, no specific hardware is needed, and it
allows the user to replace or alter its methods freely.
For instance, the OpenFace face point detector can
be replaced to further improve the performance of
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OpenFace on images with low resolution as well as
side profile images. However, the use of other land-
mark points can be further examined, which can
help detect landmarks in side profile images.
Furthermore, the performance of the detector on
tilted images can be improved with a few modifica-
tions, such as better alignment of the image.
Moreover, all the available models, for both com-
parison and classification, can be retrained. A draw-
back of the retraining of models is the need for a
large dataset of 500 000 images in jpg or png format
in folders per subject.

However, no official report has examined the
existence of duplicates in the training dataset, which
should be further studied as they can improve the
performance of OpenFace models. Further, regard-
ing computational and memory-related demands in
retraining the classification model, CUDA needs to
be used. Moreover, the retraining of the models for
forensic purposes can be based on the relevant
forensic data, which has not yet been researched.
There is no open-source dataset of this type that is
as large as is needed at present.

An important result of this study is the noticeable
correlation between the resolution of the input
images and the performance of OpenFace. However,
the degree of this correlation should be examined
further. The aforesaid leads us to infer that
OpenFace is currently inadequate for use for foren-
sic purposes, as the resolution of the input images is
intimately related to its performance.

Nevertheless, research on the use of the likeli-
hood ratio (LR) concerning the calculated distances
for query faces can help improve the results of
OpenFace because the similarity among the queried
faces can be determined based on a statistical scale,
as with the LR used for DNA profile comparison.
To determine the proper LR scale, various factors
can be considered, such as the quality and the size
of both query images, the racial and sex group to
which people in the images belong, and the interval
between the query images. In general, with the use
of the LR, the use of OpenFace may prove more
feasible in forensics. Often, the LR in forensic face
examination is defined as the hypothesis (of the
prosecutor) that the face in the given image is iden-
tical to that of the suspect, against the hypothesis
(of the defence) that the faces are not the same.

Another research question that needs further
examination is the best choice of model based on
the query data and its application based on the per-
formance of the models. Moreover, the runtime of
OpenFace models was significantly longer than that
reported for Amos, which could be attributed to dif-
ferent hardware. However, an examination of run-
time should be undertaken to revalidate the results

on a different machine, ideally a GPU. Furthermore,
OpenFace has only been officially tested on Linux
and OSX machines. However, the proper installation
of all OpenFace requisites is possible in principle on
Windows as well [29].

A remarkable aspect of OpenFace models is that
there was a noticeable performance degradation on
input images of Asian people and children. This can
be attributed to the training datasets, which were
probably imbalanced in terms of racial and age
groups. However, this is an issue that can be simply
eliminated by training the models on balanced data-
sets. Another interesting research topic for future
research is the examination of OpenFace using
images of people across a large age interval. There is
a need for investigations on facial recognition based
on skin and age variations, which are useful in cases
involving missing children, for instance, whose
appearance changes rapidly over a few years.

Conclusion

In this article, OpenFace was examined in relation
to face verification, recognition and clustering tasks
on still images based on multiple datasets. Its per-
formance was verified on the LFW benchmark data-
sets. However, in light of use in forensics, OpenFace
minimized the threshold reported in [1] and, its
performance depended on the quality of the dataset
used. Moreover, the runtime of the models
depended on multiple factors: namely, the number
of model parameters, the quality of the machine,
and the size and quality of the dataset. A retraining
of the models can improve the performance of
OpenFace on the relevant forensic datasets. Using
training datasets balanced in terms of age and racial
diversity is an example of such retraining.

The effect of the quality of the query images on
the efficiency of OpenFace was apparent. Therefore,
OpenFace is inadequate in its current state for use
in forensics applications owing to the low quality of
images acquired from closed-circuit television
(CCTV)—a major source of images used in the
area. For better quality images, the system works
well and can be considered a complementary tool in
forensic examination.
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